--手掌大小的机身,为您带来前所未有的便捷。作为MELSEC超长产品线中的一颗新星,以杰出的性能和坚若磐石的稳定性著称。三菱L系列在其令人难以置信的小巧机身中集成了高性能、多功能性及大容量,即使在当今最为严苛的各项应用场合中也游刀有余。MELSEC-L系列极大地拓宽了功能性范围(这一点小型PLC常难以做到),并充分运用以用户为中心的设计,使其在易用性方面取得了重大突破。以下对三菱PLC MELSEC-L系列CPU模块的特点进行说明。1、模块之间可以直接连接 通过模块侧面配备的连接器,模块之间可以直接连接。 因此,可以以最小限度空间进行系统扩展。2、通过功能内置功能减少系统成本,由于下述功能已内置在CPU模块中,因此仅通过CPU模块便可构筑小型系统。有L26CPU-BT才可以使用CC-Link功能。3、通过显示模块提高操作性; 通过安装显示模块,可以无需使用计算机执行下述操作。 通过软元件值的确认及更改进行的配线检查·时钟数据的显示及设置·智能功能模块设置值的确认及更改 ·出错信息及出错详细信息的确认
全屏运行你的应用程序移去文件名栏和菜单栏,因此你以享受整个屏幕运行的好处。2.采用明亮的背景颜色明亮的背景颜色可以隐藏手指印,减小刺眼眩目的光线对视觉所造成的影响。其他图案背景(例如,皱纸图案)会使眼睛专注于屏幕图象而不是屏幕反射,即使在没有图标和菜单选项的区域,也是如此。3.用大按钮作为简单的点击界面拖曳、双击、滚动条、下拉菜单、各种窗口或是其它因素都会使一些不熟练的使用者感到糊涂,也会减小使用者对产品的亲和度,降低其使用效率。4.将鼠标的光标移去,使用户能注意整个屏幕而不是那个箭头屏幕上的鼠标箭头会使用户想到,我怎么才能利用这个箭头来做我想做的事情?将箭头移去,用户的思考和行为就由间接变为直接。这样触摸屏的真正力量就显现出来了。
三菱QD75P4定位模块损坏,如何更换为三菱触摸屏QD75P4N工控件由于其工作时间、环境的多种问题原因,导致控件的损坏,那么如何更换就是我们经常关注的问题了,今天以三菱触摸屏Q系列plc为例,主要讲三菱QD75P4定位模块损坏,如何更换为三菱QD75P4N1、通过USB-30R2电缆电脑跟QCPU通讯,新建一个空白程序,根据实际的槽位添加QD75模块,这里以0号槽位不例(所以是QD75D2),下载QD75P4模块参数设置并保存。2、在完成以上动作后进行断电,断电后添加带N的新模块“QD75D2N”替代之前的QD75D2(即QD75P4更换5P4N)。为了避免冲突需要将旧模块槽位改为1(按实际改动),然后上电将D75P4模块的设置参数下载至新建的定位模块参数中,这一步非常关键。3、在完成以上所有的步骤后再次断电重启,测试运行即可。
和三菱伺服电机等产品都有应用;为了更好的服务广大用户,就为大家解说一个案例。这次介绍M代码功能,又称“M代码输出功能”,提到可以实现轴1定位完成后自动启动轴2定位,轴2定位完成后又可以自动启动轴1定位。实际上,“M代码输出功能”是用于执行正在进行的定位数据相关的辅助作业(夹紧、钻头旋转、工具更换等)的指令的功能。相当于说,当某个轴在执行定位的同时,需要启动其他辅助动作的话,可以通过该轴输出一个信号,就是M代码,来启动其他辅助动作。接下来将通过一个简单编程实例来展示一下M代码的使用方法。 首先需要说明的是,在简易运动控制模块的参数里,可以看到一个Pr.18的参数与M代码相关。这个参数是“M代码ON信号输出时机”,并可以看到有“WITH模式”及“AFTER模式”两个选项。简单来讲,WITH模式指的是M代码信号是在该轴定位启动时输出的;FTER模式指的是M代码信号是在该轴定位完成时输出的。 比如本文开头提到的轴1定位完成之后自动启动轴2定位,就可以通过轴1的M代码用AFTER模式来输出信号启动轴2定位,其次,在定位数据的最后一列,就是设置M代码的地方,每一个定位数据都可以设置一个M代码,M代码可以在1-65535中任意设置一个整数(设为0则表示不使用),同一轴的定位数据里,M代码不要设为一样,不同轴之间则无所谓。比如,在本例中,轴1定位数据1的M代码设置为100,定位数据2的M代码设置为102。 为了在程序中不混淆,轴2定位数据1的M代码设置为101。
随着中国从制造业大国转变为制造业强国的进程和数字化交流系统的性能价格比逐渐提高的基础上,交流伺服系统作为控制电机类高档精密部件,它在行业中的市场也是在稳步上升。那么作为数控机床最重要的组成部分,同时系统也一直是影响系统加工性能的重要指标之一。决定交流伺服系统性能好坏的关键性因素依然是伺服控制技术,但由于交流伺服系统本身的有着极其先进的控制原理以及低成本,免维护的特性,更何况其控制特性也在全面的超越直流伺服系统,势必在今后的发展过程中将大部分甚至是全部代替直流伺服系统, 不仅如此,随着目前智能化的大幅度推广以及网络化模块化的盛行,而现代交流伺服驱动设备也同时具备着参数记忆的功能,以及自身故障的诊断和分析的功能,有的伺服电机甚至还具备了识别参数的性能,还能在发现振动的时候自动对其进行抑制,这些都是伺服电机在智能化的发展趋势。而网络化的重点发展方向就是如何适应高性能运动控制对数据传输的实时性、同步性以及可靠性的要求。高档数控系统的成功开发,也预示着网络化数字伺服开发成为当下的当务之急,还有伺服电机驱动器、电源、再生制动、以及电机与电机之间的通讯都在不断的向模块化方向发展。