--手掌大小的机身,为您带来前所未有的便捷。作为MELSEC超长产品线中的一颗新星,以杰出的性能和坚若磐石的稳定性著称。三菱L系列在其令人难以置信的小巧机身中集成了高性能、多功能性及大容量,即使在当今最为严苛的各项应用场合中也游刀有余。MELSEC-L系列极大地拓宽了功能性范围(这一点小型PLC常难以做到),并充分运用以用户为中心的设计,使其在易用性方面取得了重大突破。以下对三菱PLC MELSEC-L系列CPU模块的特点进行说明。1、模块之间可以直接连接 通过模块侧面配备的连接器,模块之间可以直接连接。 因此,可以以最小限度空间进行系统扩展。2、通过功能内置功能减少系统成本,由于下述功能已内置在CPU模块中,因此仅通过CPU模块便可构筑小型系统。有L26CPU-BT才可以使用CC-Link功能。3、通过显示模块提高操作性; 通过安装显示模块,可以无需使用计算机执行下述操作。 通过软元件值的确认及更改进行的配线检查·时钟数据的显示及设置·智能功能模块设置值的确认及更改 ·出错信息及出错详细信息的确认
系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。2、交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。3、伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度。交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。
直流三菱伺服驱动器可应用在是火花机、机械手、精确的机器等。可同时配置2500P/R高分析度的标准编码器及测速器,更能加配减速箱、令机械设备带来可靠的准确性及高扭力。 调速性好,单位重量和体积下,输出功率最高,大于交流电机,更远远超过步进电机。多级结构的力矩波动小。三菱伺服驱动器在封闭的环里面使用。就是说它随时把信号传给系统,同时把系统给出的信号来修正自己的运转。一、精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题;二、转速:高速性能好,一般额定转速能达到2000~3000转;三、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用;四、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合;五、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内;六、舒适性:台达伺服电机的发热和噪音明显降低。
近几年,虽然国内的伺服厂家也在关键技术上作重点突破,不过以现阶段来看,国内的伺服电机还是问题重重。 基于中国智能制造发展起步晚的国情,早期的机器人一般都是运用通用性产品居多,包括目前市面上的伺服电机产品大多还是通用型的。 由于伺服电机并非为机器人专门研发,在产品性能上仍无法满足高端机器人需要的功能和参数。这在较大程度上,也反映了出了伺服电机在应用上的局限性。虽然国产伺服系统在市场上的比重比较低,但近几年国产品牌伺服系统的发展也很迅速,获得了一定的市场认可,比较具有代表性的企业主要有华中数控、广州红森等。同时还有一大批相关企业也进入到了伺服系统行业,比如深圳的英威腾、汇川科技等。国产伺服系统在技术与性能上与国外品牌有较大的差距,并且产品质量与稳定性也不能同国外品牌同日而语,但国产伺服系统厂商为中小型制造加工企业提供了价格低廉的伺服产品与快捷迅速的售后服务,很好的满足了经济型企业用户的需求。 一般来说,具备高性能、高精度、高稳定性等要素的伺服电机,需要软硬件之间的配合。而国产伺服电机还欠缺使用的电机数字算法和高可靠的功能模块、元器件等方面的成熟技术,导致生产管控、技术稳定性较差
浅析变频器控制方式的展望随着电力电子技术、微电子技术、计算机网络等高新技术的发展,变频器的控制方式今后将向以下几个方面发展。现在,的控制方式用数字处理器可以实现比较复杂的运算,变频器数字化将是一个重要的发展方向,目前进行变频器数字化主要采用单片机MCS51或80C196MC等,辅助以SLE4520或EPLD液晶显示器等来实现更加完善的控制性能。单一的控制方式有着各自的优缺点,并没有“万能”的控制方式,在有些控制场合,需要将一些控制方式结合起来,例如将学习控制与神经网络控制相结合,自适应控制与模糊控制相结合,直接转矩控制与神经网络控制相结合,或者称之为“混合控制”,这样取长补短,控制效果将会更好。随着可持续发展战略的提出,对于环境的保护越来越受到人们的重视。变频器产生的高次谐波对电网会带来污染,降低变频器工作时的噪声以及增强其工作的可靠性、安全性等等这些问题,都试图通过采取合适的控制方式来解决,设计出绿色变频器。